인천대학교 STAR 연구실 소개서

User Value Laboratory										
책임교수		박재현				인천대학교 교수 삼성전자 IM				
	성명				T 0	(2013-2				
					주요 학력	박사 포항공과대학 (201				
	소속	공과대학 산업경영공학과			경력	석사 포항공과대학	교 산업경영공학			
						(201 학사 포항공과대학				
						(200				
	직 책		인 원	성 명 (담당분야)						
구 성 원	박사 후 연구원		1	Dr. Olga Bitkina(데이터 기반의 인간공학)						
	박 사		1	Muhammad Hussain(VR, 제조 안전성 분야)						
	석 시	2	정수환(문화적 차이 and VR), 최문경(VR, 자동화의 신뢰성 분야)							
산학협력 희망분야	1. 인간공학, HCI 분야 산학협력 공동연구 및 기술이전 (로봇, 의료용 재활용 보조장치 등) 2. UX/UI 분야 산학협력 공동연구 및 기술이전 (웨어러블 디바이스 등)									
대표연구 분야	사용자 경험(UX)을 고려하여 의료용, 재활용 보조 강치의 신체적 적합성을 증가시키도록 설계 인체공학적 설계 외골격 로봇 워커,									
			_/		생체 신호 측정기(EMG			(EMG, ECG, GSR)		
	인간공학, HCI, UX/UI				웨어러블 디바이스, VR/AR 드론의 사용자 인터페 (사용자 경험과 관련한 문제			인터페이스 설계		
				더	이터 기	반의 UX, UV	데이터들의 정량회	용자 가치와 관련된 된 분석을 통해 제품, 사용성을 높임		
대표기술 개요 및 개발현황	1. 생체 신호 수신 및 분석 2. 제품 및 서비스 사용성 / UX 평가 3. 자동차 / VR / AR / 의료기기 / 외골격 로봇 인터페이스 설계 및 개발									

개발 관련 시제품 사진	(Bench	110 10 11 12 9 8 5 4	120	손목시계의 시계줄을 자동으로 조절하여 착용자의 손목 둘레를 이용해 등록된 사용자인지 여부를 판단할 수 있는 기술 개발 도난 및 유실을 방지하고, 스마트 워치의 보안성을 향상 사용자의 움직임을 감지하여 운동 유형을 자동으로 판별 및 분류하고, 각 유형의 운동을 실시한 횟수를 자동으로 결정하여 기록하는 기술 개발						
	순번	출원번호	출원일	발명의 명칭						
특허 및 노하우	1	10-2017-0005951	2017-01-13	손목 둘레를	- 0 · 0 0 - 이용한 주인 인증 방법 및 손목시계					
, , , ,	2	10-2016-0126916	2016-09-30	동의 유형을 자동으로 분류하기 위한 방법 및 장치						
연구 실적	1. 가치 기반 보행 재활 평가 체계 개발 및 적용 (Development and application of value-based gait rehabilitation evaluation) (HMH & Dongguk University Ilsan Hospital, 2019) 2. 다중감각으로 촉발된 생체신호 기반의 개인 인증 방법 개발 (Development of personal authentication method based on physiological signals triggered by multimodal interfaces) (NRF, 2018~2021) 3. 인체 치수 측정을 위한 인체 3D 스캐닝 시스템 개발 (Development of a human body 3D scanning system for anthropometric measurements) (WEAROBO & TIPA, 2018~2019) 4. 헬멧 착용 모니터링을 위한 센서 모듈의 인체공학적 적합성 분석 (Analysis of ergonomic suitability of sensor modules for a helmet monitoring system) (Choice Value, 2018) 5. 작업자용 근력보조 시스템의 인체부하 측정 (Risk assessment of a power assistant suit for workers) (HMH & Rehabilitation Engineering Research Institute, 2018)									

6. 피부전기반사 기반 생체신호 분석 인터페이스 개발 (Development of bio-signal analysis interfaces based on skin conductance responses) (WEAROBO & WISET, 2018) 7. 헬스케어기기용 맞춤형 웨어러블 유닛 3D 프린팅 (3D printing of customizable wearable units for healthcare equipment) (WEAROBO & INU-BI, 2018) 논문 32편 / 특허 8건 1. Identifying Traffic Context Using Driving Stress: A Longitudinal Preliminary Case Study, SENSORS, 제19권(집), 제9호, 2019.05.01. 2. Comparison of Gaze Cursor Input Methods for Virtual Reality Devices, INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 제35권(집), 제7호, PP.620~629, 2019.04.21. 3. 업무용 공간 유형에 대한 가상현실 기반 분석, 대한산업공학회지, 제45권(집), 제2호, PP.154~161, 2019.04.01. 4. Comparison of affective perception of Bitcoin between Korea and China, ICIC Express Letters, 제13권(집), 제3호, PP.231~237, 2019.03.01. 5. Does the Hand Anthropometric Dimension Influence Touch Interaction?, JOURNAL OF COMPUTER INFORMATION SYSTEMS, 제59권(집), 제1호, PP.85~96, 2019.01.01. 6. Development of a web-based user experience evaluation system for home appliances, INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 제67권(집), PP.216~228, 2018.06.06. 7. Analyzing thumb interaction on mobile touchpad devices, INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 제67권(집), PP.201~209, 2018.06.05. 8. Relationships between physiological signals and stress levels in the case of automated technology failure, Human-Intelligent Systems Integration, pp. 1-9, 2019. 9. There is no perfect evaluator: An investigation based on prospect theory, Human 논문 Factors and Ergonomics in Manufacturing & Service Industries, 제28권(집), 제6호, PP.383~392, 2018.06.04. 10. A value sampling method for evaluating user value: a case study of a smartphone, International Journal of Mobile Communications, 제16권(집), 제4호, PP.440~458, 2018.03.30. 11.제품의 무게와 크기에 따른 선호도 및 만족도 분석: 과자 제품을 중심으로, 대한산업공학 회지, 제43권(집), 제3호, PP.172~179, 2018.03.17. 12. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment, APPLIED ERGONOMICS, 제69권(집), PP.66~73, 2018.01.06. 13. Comparison of Drivers' Perceived Multitasking Workload, Information, 제20권(집), 제11 호, pp. 8117-8124, 2017.11.30. 14. Inconsistent work performance in automation, can we measure trust in automation? International Robotics & Automation Journal, 제3권(집), 제6호, 2017. 15. Do interaction modes influence the degree of virtual reality sickness?, ICIC Express Letters, Part B: Applications, 제8권(집), 제10호, PP.1395~1400, 2017.10.01. 16. A topic modeling method based on the affective filter, ICIC Express Letters, 제11권(집), 제10호, PP.1579~1584, 2017.10.01. 17.가상 현실 기술 동향 및 멀미 저감 연구 사례, ie매거진, 제24권(집), 제1호, PP.36~39,

2017.03.01.

- 1. IMU / 카메라 기반의
- 2. EMG / ECG / GSR 측정 기기

홈페이지

https://sites.google.com/site/uvlabinu/